Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Omega ; 9(6): 6845-6860, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371782

RESUMO

A novel combination of antibiotic, ciprofloxacin (CIP) with herbal counterpart naringin (NAR) was encapsulated by an oleic acid lipid core and carboxymethyl chitosan (CM-CS)/Alginate (AG) nanoparticle composite (CIP + NAR-CM-CS/AG-NPs) for improved antimicrobial efficacy of antibiotic. Herein, this study explored the design and preparation of a composite system that enables to deliver both CIP and NAR from the oleic acid lipid core of CM-CS/AG nanoparticles using a nonsolvent ionic gelation technique. The nanoparticles (NPs) were fabricated with improved long-acting antimicrobial activity against E. coli and S. aureus. The optimized composition was investigated for physicochemical properties particle size, particle distribution, and ζ-potential. A diverse array of analytical tools was employed to characterize the optimized formulation including DSC, XRD, Malvern Zetasizer for particle size, ζ-potential, TEM, and SEM. Further, the preparation was investigated for % drug release, flux determination, antioxidant, and antimicrobial activity. The formulation stability was tested for 90 days and also evaluated formulation stability in fetal bovine serum to inspect the modification in physicochemical characteristics. NPs size was determined at 85 nm, PDI, and ζ-potential was recorded at 0.318, and 0.7 ± 0.4 mV. The % CIP and NAR entrapment efficiency and % loading were incurred as 91 ± 1.9, and 89.5 ± 1.2; 11.5 ± 0.6, and 10.8 ± 0.5%, respectively. The drug release erupted in the beginning phase followed by sustained and prolonged release for 48 h. The analytical experiments by DSC ensured the noninteracting and safe use of excipients in combination. X-ray studies demonstrated the amorphous state of the drug in the formulation. The insignificant alteration of formulation characteristics in FBS suggested stable and robust preparation. Storage stability of the developed formulation ensured consistent and uniform stability for three months. The DPPH assays demonstrated that NAR had good antioxidant capacity and supported improving antimicrobial activity of CIP. The hemolytic test suggested the developed formulation was compatible and caused insignificant RBC destruction. The in-house built formulation CIP + NAR-CM-CS/AG-NPs significantly improved the antimicrobial activity compared to CIP alone, offering a novel choice in antimicrobial application.

2.
Chem Biol Drug Des ; 103(1): e14372, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37817296

RESUMO

Human immunodeficiency virus (HIV) causes acquired immunodeficiency syndrome (AIDS), a lethal disease that is prevalent worldwide. According to the Joint United Nations Programme on HIV/AIDS (UNAIDS) data, 38.4 million people worldwide were living with HIV in 2021. Viral reverse transcriptase (RT) is an excellent target for drug intervention. Nucleoside reverse transcriptase inhibitors (NRTIs) were the first class of approved antiretroviral drugs. Later, a new type of non-nucleoside reverse transcriptase inhibitors (NNRTIs) were approved as anti-HIV drugs. Zidovudine, didanosine, and stavudine are FDA-approved NRTIs, while nevirapine, efavirenz, and delavirdine are FDA-approved NNRTIs. Several agents are in clinical trials, including apricitabine, racivir, elvucitabine, doravirine, dapivirine, and elsulfavirine. This review addresses HIV-1 structure, replication cycle, reverse transcription, and HIV drug targets. This study focuses on NRTIs and NNRTIs, their binding sites, mechanisms of action, FDA-approved drugs and drugs in clinical trials, their resistance and adverse effects, their molecular docking studies, and highly active antiretroviral therapy (HAART).


Assuntos
Síndrome de Imunodeficiência Adquirida , Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/uso terapêutico , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Simulação de Acoplamento Molecular , Infecções por HIV/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida/induzido quimicamente , Síndrome de Imunodeficiência Adquirida/tratamento farmacológico , Transcriptase Reversa do HIV/metabolismo
3.
RSC Med Chem ; 14(10): 1837-1857, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37859720

RESUMO

MEK1/2 are critical components of the RAS-RAF-MEK-ERK or MAPK signalling pathway that regulates a variety of cellular functions including proliferation, survival, and differentiation. In 1997, a lung cancer cell line was first found to have a MEK mutation (encoding MEK2P298L). MEK is involved in various human cancers such as non-small cell lung cancer (NSCLC), spurious melanoma, and pancreatic, colorectal, basal, breast, and liver cancer. To date, 4 MEK inhibitors i.e., trametinib, cobimetinib, selumetinib, and binimetinib have been approved by the FDA and several are under clinical trials. In this review, we have highlighted structural insights into the MEK1/2 proteins, such as the αC-helix, catalytic loop, P-loop, F-helix, hydrophobic pocket, and DFG motif. We have also discussed current issues with all FDA-approved MEK inhibitors or drugs under clinical trials and combination therapies to improve the efficacy of clinical drugs. Finally, this study addressed recent developments on synthetic MEK inhibitors (from their discovery in 1997 to 2022), their unique properties, and their relevance to MEK mutant inhibition.

4.
ACS Omega ; 8(31): 27819-27844, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576670

RESUMO

Serine/threonine-protein kinase B-Raf (BRAF; RAF = rapidly accelerated fibrosarcoma) plays an important role in the mitogen-activated protein kinase (MAPK) signaling cascade. Somatic mutations in the BRAF gene were first discovered in 2002 by Davies et al., which was a major breakthrough in cancer research. Subsequently, three different classes of BRAF mutants have been discovered. This class includes class I monomeric mutants (BRAFV600), class II BRAF homodimer mutants (non-V600), and class III BRAF heterodimers (non-V600). Cancers caused by these include melanoma, thyroid cancer, ovarian cancer, colorectal cancer, nonsmall cell lung cancer, and others. In this study, we have highlighted the major binding pockets in BRAF protein, their active and inactive conformations with inhibitors, and BRAF dimerization and its importance in paradoxical activation and BRAF mutation. We have discussed the first-, second-, and third-generation drugs approved by the Food and Drug Administration and drugs under clinical trials with all four different binding approaches with DFG-IN/OUT and αC-IN/OUT for BRAF protein. We have investigated particular aspects and difficulties with all three generations of inhibitors. Finally, this study has also covered recent developments in synthetic BRAF inhibitors (from their discovery in 2002 to 2022), their unique properties, and importance in inhibiting BRAF mutants.

5.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37259442

RESUMO

Cancer is one of the major healthcare challenges across the globe. Several anticancer drugs are available on the market but they either lack specificity or have poor safety, severe side effects, and suffer from resistance. So, there is a dire need to develop safer and target-specific anticancer drugs. More than 85% of all physiologically active pharmaceuticals are heterocycles or contain at least one heteroatom. Nitrogen heterocycles constituting the most common heterocyclic framework. In this study, we have compiled the FDA approved heterocyclic drugs with nitrogen atoms and their pharmacological properties. Moreover, we have reported nitrogen containing heterocycles, including pyrimidine, quinolone, carbazole, pyridine, imidazole, benzimidazole, triazole, ß-lactam, indole, pyrazole, quinazoline, quinoxaline, isatin, pyrrolo-benzodiazepines, and pyrido[2,3-d]pyrimidines, which are used in the treatment of different types of cancer, concurrently covering the biochemical mechanisms of action and cellular targets.

6.
Chem Biodivers ; 20(8): e202300719, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37312449

RESUMO

In hepatic cancer, precancerous nodules account for damage and inflammation in liver cells. Studies have proved that phyto-compounds based on biosynthetic metallic nanoparticles display superior action against hepatic tumors. This study targeted the synthesis of genistein-fortified zinc ferrite nanoparticles (GENP) trailed by anticancer activity assessment against diethylnitrosamine and N-acetyl-2-aminofluorene induced hepatic cancer. The process of nucleation was confirmed by UV/VIS spectrophotometry, X-ray beam diffraction, field-emission scanning electron microscopy, and FT-IR. An in vitro antioxidant assay illustrated that the leaves of Pterocarpus mildbraedii have strong tendency as a reductant and, in the nanoformulation synthesis, as a natural capping agent. A MTT assay confirmed that GENP have a strong selective cytotoxic potential against HepG2 cancer cells. In silico studies of genistein exemplified the binding tendency towards human matrix metalloproteinase comparative to the standard drug marimastat. An in vivo anticancer evaluation showed that GENP effectively inhibit the growth of hepatic cancer by interfering with hepatic and non-hepatic biochemical markers.


Assuntos
Neoplasias Hepáticas , Nanopartículas Metálicas , Humanos , Zinco , Genisteína/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas Metálicas/química , Extratos Vegetais/química , Difração de Raios X , Química Verde , Antibacterianos/farmacologia
7.
Ageing Res Rev ; 88: 101960, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224884

RESUMO

Alzheimer's disease (AD), also called senile dementia, is the most common neurological disorder. Around 50 million people, mostly of advanced age, are suffering from dementia worldwide and this is expected to reach 100-130 million between 2040 and 2050. AD is characterized by impaired glutamatergic and cholinergic neurotransmission, which is associated with clinical and pathological symptoms. AD is characterized clinically by loss of cognition and memory impairment and pathologically by senile plaques formed by Amyloid ß deposits or neurofibrillary tangles (NFT) consisting of aggregated tau proteins. Amyloid ß deposits are responsible for glutamatergic dysfunction that develops NMDA dependent Ca2+ influx into postsynaptic neurons generating slow excitotoxicity process leading to oxidative stress and finally impaired cognition and neuronal loss. Amyloid decreases acetylcholine release, synthesis and neuronal transport. The decreased levels of neurotransmitter acetylcholine, neuronal loss, tau aggregation, amyloid ß plaques, increased oxidative stress, neuroinflammation, bio-metal dyshomeostasis, autophagy, cell cycle dysregulation, mitochondrial dysfunction, and endoplasmic reticulum dysfunction are the factors responsible for the pathogenesis of AD. Acetylcholinesterase, NMDA, Glutamate, BACE1, 5HT6, and RAGE (Receptors for Advanced Glycation End products) are receptors targeted in treatment of AD. The FDA approved acetylcholinesterase inhibitors Donepezil, Galantamine and Rivastigmine and N-methyl-D-aspartate antagonist Memantine provide symptomatic relief. Different therapies such as amyloid ß therapies, tau-based therapies, neurotransmitter-based therapies, autophagy-based therapies, multi-target therapeutic strategies, and gene therapy modify the natural course of the disease. Herbal and food intake is also important as preventive strategy and recently focus has also been placed on herbal drugs for treatment. This review focuses on the molecular aspects, pathogenesis and recent studies that signifies the potential of medicinal plants and their extracts or chemical constituents for the treatment of degenerative symptoms related to AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Secretases da Proteína Precursora do Amiloide , Acetilcolina/fisiologia , Acetilcolina/uso terapêutico , Acetilcolinesterase/uso terapêutico , N-Metilaspartato/uso terapêutico , Ácido Aspártico Endopeptidases/uso terapêutico
8.
RSC Adv ; 13(10): 6872-6908, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865574

RESUMO

Cancer is a major cause of deaths across the globe due to chemoresistance and lack of selective chemotherapy. Pyrido[2,3-d]pyrimidine is an emerging scaffold in medicinal chemistry having a broad spectrum of activities, including antitumor, antibacterial, CNS depressive, anticonvulsant, and antipyretic activities. In this study, we have covered different cancer targets, including tyrosine kinase, extracellular regulated protein kinases - ABL kinase, phosphatidylinositol-3 kinase, mammalian target of rapamycin, p38 mitogen-activated protein kinases, BCR-ABL, dihydrofolate reductase, cyclin-dependent kinase, phosphodiesterase, KRAS and fibroblast growth factor receptors, their signaling pathways, mechanism of action and structure-activity relationship of pyrido[2,3-d]pyrimidine derivatives as inhibitors of the above-mentioned targets. This review will represent the complete medicinal and pharmacological profile of pyrido[2,3-d]pyrimidines as anticancer agents, and will help scientists to design new selective, effective and safe anticancer agents.

9.
J Biochem Mol Toxicol ; 37(4): e23295, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36582145

RESUMO

We report a series of hybrid oxoazetidine conjugated thiazoles as epidermal growth factor receptor (EGFR) inhibitors, which were synthesized and tested using a variety of in silico and in vitro studies. The compounds were found to be active against breast and hepatic cancer cell lines, with Compounds 7a, 7b, and 7e being the most potent ones. The derivatives were also evaluated for molecular docking and complementarity studies to explicate fundamental substituent groups essential for their bioactivity. Moreover, the structural activity relationship of the analogues was performed for future compound optimization. These studies advocated that the analogues have a high affinity towards EGFR with favorable anticancer potential. The study advised that the derivatives have potency against breast and hepatic cancer and can assist as an initial scaffold for further development of anti-EGFR compounds.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Estrutura Molecular , Simulação de Acoplamento Molecular , Antineoplásicos/química , Tiazóis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Proliferação de Células , Inibidores de Proteínas Quinases/farmacologia , Relação Dose-Resposta a Droga
10.
Front Public Health ; 11: 1238961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38229669

RESUMO

Berberine-encapsulated polyelectrolyte nanocomposite (BR-PolyET-NC) gel was developed as a long-acting improved wound healing therapy. BR-PolyET-NC was developed using an ionic gelation/complexation method and thereafter loaded into Carbopol gel. Formulation was optimized using Design-Expert® software implementing a three-level, three-factor Box Behnken design (BBD). The concentrations of polymers, namely, chitosan and alginate, and calcium chloride were investigated based on particle size and %EE. Moreover, formulation characterized in vitro for biopharmaceutical performances and their wound healing potency was evaluated in vivo in adult BALB/c mice. The particle distribution analysis showed a nanocomposite size of 71 ± 3.5 nm, polydispersity index (PDI) of 0.45, ζ-potential of +22 mV, BR entrapment of 91 ± 1.6%, and loading efficiency of 12.5 ± 0.91%. Percentage drug release was recorded as 89.50 ± 6.9% with pH 6.8, thereby simulating the wound microenvironment. The in vitro investigation of the nanocomposite gel revealed uniform consistency, well spreadability, and extrudability, which are ideal for topical wound use. The analytical estimation executed using FT-IR, DSC, and X-ray diffraction (XRD) indicated successful formulation with no drug excipients and without the amorphous state. The colony count of microbes was greatly reduced in the BR-PolyET-NC treated group on the 15th day from up to 6 CFU compared to 20 CFU observed in the BR gel treated group. The numbers of monocytes and lymphocytes counts were significantly reduced following healing progression, which reached to a peak level and vanished on the 15th day. The observed experimental characterization and in vivo study indicated the effectiveness of the developed BR-PolyET-NC gel toward wound closure and healing process, and it was found that >99% of the wound closed by 15th day, stimulated via various anti-inflammatory and angiogenic factors.


Assuntos
Berberina , Quitosana , Nanopartículas , Camundongos , Animais , Nanogéis , Berberina/farmacologia , Alginatos , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização
11.
Antioxidants (Basel) ; 11(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36358576

RESUMO

Several drugs now employed in cancer therapy were discovered as a result of anticancer drug research based on natural products. Here, we reported the in vitro antioxidant and anticancer activity followed by in silico anticancer and estrogen-like activity of Psidium guajava L. essential oil against ER-α receptors which lead to potential inhibitory action against breast cancer pathways. METHODS: The bioactive compounds in guava essential oil were screened using gas chromatography-mass spectrometry (GC-MS). Similarly, the antioxidant properties of the extracted oil were evaluated using 2,2-Diphenyl-1-picrylhydrazyl scavenging assay. Furthermore, the in vitro anticancer activity of guava oil was observed through the MTT assay and an in silico molecular docking experiment was also carried out to ensure that they fit into the estrogen receptors (ERs) and possess anticancer potential. RESULTS: The GC-MS profile of the essential oil revealed the presence of 17 chemicals, with limonene (51.3%), eucalyptol (21.3%), caryophyllene oxide (6.2%), caryophyllene (5.6%), and nerolidol (4.5%) occupying more than one-third of the chromatographic spectrum zone. Guava leaves' essential oil (EO) inhibited DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and exhibited concentration dependent free radical scavenging activity, acting as a potent antioxidant with an IC50 value of 29.3 ± 0.67 µg/mL. The outcome of the MTT assay showed that the extracted guava oil had nearly the same efficacy against breast and liver cancer cells at a low concentration (1 µg/mL), giving 98.3 ± 0.3% and 98.5 ± 0.4% cell viability against HepG2 at 1 µg/mL, respectively. When the concentration of essential oil was increased, it showed a small reduction in the percentage of viable cells. While conducting an in silico study of all the screened compounds, the potential for hydroxycaryophyllene, caryophyllene, caryophyllene oxide, humulene, terpineol, and calamenene to inhibit tumor growth was bolstered due to a resemblance to 4-hydroxytamoxifen, thereby implying that these compounds may act as selective estrogen receptor modulators (SERMs). The ADME analysis of the compounds indicated above revealed that they exhibit excellent drug likeness properties and follow the Lipinski rule of five. CONCLUSIONS: Consequently, they have a substantial anticancer therapeutic potential and can be used for novel drug discovery in the effort to minimize the global burden of breast cancer.

12.
RSC Adv ; 12(46): 30181-30200, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36329938

RESUMO

The "RAS-RAF-MEK-ERK" pathway is an important signaling pathway in melanoma. BRAFV600E (70-90%) is the most common mutation in this pathway. BRAF inhibitors have four types of conformers: type I (αC-IN/DFG-IN), type II (αC-IN/DFG-OUT), type I1/2 (αC-OUT/DFG-IN), and type I/II (αC-OUT/DFG-OUT). First- and second-generation BRAF inhibitors show resistance to BRAFV600E and are ineffective against malignancies induced by dimer BRAF mutants causing 'paradoxical' activation. In the present study, we performed molecular modeling of pyrimidine-sulfonamide hybrids inhibitors using 3D-QSAR, molecular docking, and molecular dynamics simulations. Previous reports reveal the importance of pyrimidine and sulfonamide moieties in the development of BRAFV600E inhibitors. Analysis of 3D-QSAR models provided novel pyrimidine sulfonamide hybrid BRAFV600E inhibitors. The designed compounds share similarities with several structural moieties present in first- and second-generation BRAF inhibitors. A total library of 88 designed compounds was generated and molecular docking studies were performed with them. Four molecules (T109, T183, T160, and T126) were identified as hits and selected for detailed studies. Molecular dynamics simulations were performed at 900 ns and binding was calculated. Based on molecular docking and simulation studies, it was found that the designed compounds have better interactions with the core active site [the nucleotide (ADP or ATP) binding site, DFG motif, and the phospho-acceptor site (activation segment) of BRAFV600E protein than previous inhibitors. Similar to the FDA-approved BRAFV600E inhibitors the developed compounds have [αC-OUT/DFG-IN] conformation. Compounds T126, T160 and T183 interacted with DIF (Leu505), making them potentially useful against BRAFV600E resistance and malignancies induced by dimer BRAF mutants. The synthesis and biological evaluation of the designed molecules is in progress, which may lead to some potent BRAFV600E selective inhibitors.

13.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36145292

RESUMO

Cancer is a complex disease, and its treatment is a big challenge, with variable efficacy of conventional anticancer drugs. A two-drug cocktail hybrid approach is a potential strategy in recent drug discovery that involves the combination of two drug pharmacophores into a single molecule. The hybrid molecule acts through distinct modes of action on several targets at a given time with more efficacy and less susceptibility to resistance. Thus, there is a huge scope for using hybrid compounds to tackle the present difficulties in cancer medicine. Recent work has applied this technique to uncover some interesting molecules with substantial anticancer properties. In this study, we report data on numerous promising hybrid anti-proliferative/anti-tumor agents developed over the previous 10 years (2011-2021). It includes quinazoline, indole, carbazole, pyrimidine, quinoline, quinone, imidazole, selenium, platinum, hydroxamic acid, ferrocene, curcumin, triazole, benzimidazole, isatin, pyrrolo benzodiazepine (PBD), chalcone, coumarin, nitrogen mustard, pyrazole, and pyridine-based anticancer hybrids produced via molecular hybridization techniques. Overall, this review offers a clear indication of the potential benefits of merging pharmacophoric subunits from multiple different known chemical prototypes to produce more potent and precise hybrid compounds. This provides valuable knowledge for researchers working on complex diseases such as cancer.

14.
Pharmaceutics ; 14(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015337

RESUMO

ß−sitosterol is the most abundant type of phytosterol or plant sterol and can be found in various plant dietary sources including natural oils, soy products, and nuts. Numerous studies have demonstrated the potential therapeutic and clinical applications of ß−sitosterol including lowering low-density lipoprotein and cholesterol levels, scavenging free radicals in the body, and interestingly, treating and preventing cancer. This study focuses on synthesizing and characterizing ß−sitosterol encapsulated Alginate/Chitosan nanoparticles (ß−sito−Alg/Ch/NPs) and evaluating their effectiveness in breast cancer treatment and their pharmacokinetic profile in vivo. The synthesized NPs, which incurred a mean size of 25 ± 1 nm, were extensively characterized in vitro for various parameters including surface charge and morphology. The NPs were further analyzed using DSC, FT-IR, thermogravimetry and X-ray diffraction studies. The release of ß−sito from NPs was carried out in a bio-relevant medium of pH 7.4 and pH 5.5 and samples were drawn off and analyzed under time frames of 0, 8, 16, 32, 64, 48, 80, and 96 h, and the best kinetic release model was developed after fitting drug release data into different kinetic models. The metabolic activity of MCF-7 cells treated with the prepared formulation was assessed. The radical scavenging potential of ß−sito−Alg/Ch/NPs was also studied. The pharmacokinetic parameters including Cmax, Tmax, half-life (t1/2), and bioavailability were measured for ß−sito−Alg/Ch/NPs as compared to ß−sito−suspension. The ß−sito−Alg/Ch/NPs stability was assessed at biological pH 7.4. The % drug release in PBS of pH 7.4 reportedly has shown 41 ± 6% vs. 11 ± 1% from ß−sito−Alg/Ch/NPs and ß−sito−suspension. In acidic pH 5.5 mimicking the tumor microenvironment has shown 75 ± 9% vs. 12 ± 4% drug release from ß−sito−Alg/Ch/NPs and ß−sito−suspension. When compared to the ß−sito−suspension, the ß−sito−Alg/Ch/NPs demonstrated greater cytotoxicity (p < 0.05) and ~3.41-fold higher oral bioavailability. Interestingly, this work demonstrated that ß−sito−Alg/Ch/NPs showed higher cytotoxicity due to improved bioavailability and antioxidant potential compared to the ß−sito−suspension.

15.
Molecules ; 27(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889371

RESUMO

The current study was conducted to exemplify the effect of debelalactone on tissue protection, chronic hepatic inflammation, hepatic protection and oxidative stress induced by diethyl nitrosamine in Wistar rats. Therefore, DEN (200 mg/kg) was used for the induction the hepatocellular carcinoma (HCC) and the level of serum alpha fetoprotein was used for the estimation and confirmation of HCC. The study illustrated that debelalactone (DL) significantly downregulated the hepatic, non-hepatic parameters such as aspartate aminotransferase, alanine aminotransferase, alpha fetoprotein, NO levels, total protein, albumin, blood urea nitrogen, total bilirubin, and direct bilirubin in dose dependent manner, as well as noticeably improving the body weight, of treated animals. The macroscopically observation of DEN-induced rat liver showed the formation of informalities in liver tissue, which was reduced with treatment of DL at dose dependent manner. However, antioxidant markers and inflammatory mediators such as lipid peroxidation, catalase, superoxide dismutase, glutathione peroxidase and transferase, TNF-α, IL-1ß, IL-6, and NF-kB restored up to the normal level by DL. The histopathology studies showed that the treated group of animals returned to a normal status. Collectively, it can be concluded that debelalactone mediated chemoprevention in the DEN-induced rats via an increase in the activities of endogenous enzymes and/or inhibition the precancerous cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Antioxidantes/metabolismo , Bilirrubina/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Furocumarinas , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Peroxidação de Lipídeos , Fígado , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , alfa-Fetoproteínas
16.
Struct Chem ; 33(5): 1569-1583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669792

RESUMO

Coronavirus disease 2019 (COVID-19) has become a major challenge affecting almost every corner of the world, with more than five million deaths worldwide. Despite several efforts, no drug or vaccine has shown the potential to check the ever-mutating SARS-COV-2. The emergence of novel variants is a major concern increasing the need for the discovery of novel therapeutics for the management of this pandemic. Out of several potential drug targets such as S protein, human ACE2, TMPRSS2 (transmembrane protease serine 2), 3CLpro, RdRp, and PLpro (papain-like protease), RNA-dependent RNA polymerase (RdRP) is a vital enzyme for viral RNA replication in the mammalian host cell and is one of the legitimate targets for the development of therapeutics against this disease. In this study, we have performed structure-based virtual screening to identify potential hit compounds against RdRp using molecular docking of a commercially available small molecule library of structurally diverse and drug-like molecules. Since non-optimal ADME properties create hurdles in the clinical development of drugs, we performed detailed in silico ADMET prediction to facilitate the selection of compounds for further studies. The results from the ADMET study indicated that most of the hit compounds had optimal properties. Moreover, to explore the conformational dynamics of protein-ligand interaction, we have performed an atomistic molecular dynamics simulation which indicated a stable interaction throughout the simulation period. We believe that the current findings may assist in the discovery of drug candidates against SARS-CoV-2.

17.
Int J Mol Sci ; 23(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35742992

RESUMO

Newly designed series of indole-containing pyrazole analogs, pyrazolinylindoles, were synthesized, and their structures were confirmed based on the spectral data of the 1H NMR, 13C NMR, and HR-MS analyses. Preliminary anti-cancer activity testings were carried out by the National Cancer Institute, United States of America (NCI, USA). Compounds HD02, HD05, and HD12 demonstrated remarkable cytotoxic activities against nine categories of cancer types based cell line panels which included leukemia, colon, breast, melanoma, lungs, renal, prostate, CNS, and ovarian cancer cell lines. The highest cytotoxic effects were exhibited by the compounds HD02 [1-(5-(1-H-indol-3-yl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-phenylethanone], HD05 [1-(3-(4-chlorophenyl)-5-(1H-indol-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)-2-phenoxyethanone], and HD12 [(3-(4-chlorophenyl)-5-(1H-indol-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)(pyridin-4-yl)methanone] against some of the 56 types of NCI-based cell lines in different panels. Compound HD05 showed the maximum range of cancer cell growth inhibitions against all categories of the cell lines in all nine panels. On average, in comparison to the referral standard, imatinib, at a dose level of 10 µM, the HD05 showed significant activity against leukemia in the range of 78.76%, as compared to the imatinib at 9% of cancer cells' growth inhibitions. Molecular docking simulation studies were performed in silico on the epidermal growth factor receptor (EGFR) tyrosine kinase, in order to validate the activity.


Assuntos
Antineoplásicos , Leucemia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Indóis/química , Indóis/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
18.
Gels ; 8(4)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35448120

RESUMO

This study aimsto optimize, characterize, and assess the phytosterol-loaded surface-tailored bioactive Alginate/Chitosan NPs for antitumor efficacy against breast cancer. ß-Sitosterol-loaded Alginate/Chitosan nanoparticles (ß-SIT-Alg/Ch-NPs) were fabricated using an ion-gelation technique, and then the NPs' surfaces were activated using an EDC/sulfo-NHS conjugation reaction. The activated chitosan NPs werefunctionalized with folic acid (FA), leveled as ß-SIT-Alg/Ch-NPs-FA. Moreover, the functionalized NPs were characterized for size distribution, polydispersity index (PDI), and surface charge, FT-IR and DSC. ß-SIT released from ß-SIT-Alg/Ch-NPs was estimated in various biorelevant media of pH 7.4, 6.5, and 5.5, and data werefitted into various kinetic models. The cytotoxic study of ß-SIT-Alg/Ch-NPs-FA against the cancer cell line was established. The antioxidant study of developed ß-SIT-Alg/Ch-NPs was performed using DPPH assay. The stability of developed optimized formulation was assessed in phosphate buffer saline (PBS, pH 7.4), as per ICH guidelines. The drug-entrapped Alg/Ch-NPs-FA appeared uniform and nonaggregated, and the nanoscale particle measured a mean size of 126 ± 8.70 nm. The %drug encapsulation efficiency and %drug loading in ß-SIT-Alg/Ch-NPs-FA were 91.06 ± 2.6% and 6.0 ± 0.52%, respectively. The surface charge on ß-SIT-Alg/Ch-NPs-FA was measured as +25 mV. The maximum ß-SIT release from ß-SIT-Alg/Ch-NPs-FA was 71.50 ± 6.5% in pH 5.5. The cytotoxic assay expressed an extremely significant antitumor effect by ß-SIT-Alg/Ch-NPs-FA when compared to ß-SIT-suspension (p < 0.001). The antioxidant capacity of ß-SIT-Alg/Ch-NPs-FA was 91 ± 5.99% compared to 29 ± 8.02% for ß-SIT-suspension. The stability of NPs noticed an unworthy alteration (p > 0.05) in particle sizes and other parameters under study in the specific period.

19.
Gels ; 8(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35200463

RESUMO

Drug instillation via a topical route is preferred since it is desirable and convenient due to the noninvasive and easy drug access to different segments of the eye for the treatment of ocular ailments. The low dose, rapid onset of action, low or no toxicity to the local tissues, and constrained systemic outreach are more prevalent in this route. The majority of ophthalmic preparations in the market are available as conventional eye drops, which rendered <5% of a drug instilled in the eye. The poor drug availability in ocular tissue may be attributed to the physiological barriers associated with the cornea, conjunctiva, lachrymal drainage, tear turnover, blood-retinal barrier, enzymatic drug degradation, and reflex action, thus impeding deeper drug penetration in the ocular cavity, including the posterior segment. The static barriers in the eye are composed of the sclera, cornea, retina, and blood-retinal barrier, whereas the dynamic barriers, referred to as the conjunctival and choroidal blood flow, tear dilution, and lymphatic clearance, critically impact the bioavailability of drugs. To circumvent such barriers, the rational design of the ocular therapeutic system indeed required enriching the drug holding time and the deeper permeation of the drug, which overall improve the bioavailability of the drug in the ocular tissue. This review provides a brief insight into the structural components of the eye as well as the therapeutic challenges and current developments in the arena of the ocular therapeutic system, based on novel drug delivery systems such as nanomicelles, nanoparticles (NPs), nanosuspensions, liposomes, in situ gel, dendrimers, contact lenses, implants, and microneedles. These nanotechnology platforms generously evolved to overwhelm the troubles associated with the physiological barriers in the ocular route. The controlled-drug-formulation-based strategic approach has considerable potential to enrich drug concentration in a specific area of the eye.

20.
J Biomol Struct Dyn ; 40(6): 2851-2864, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33131430

RESUMO

Ivermectin (IVM) is a broad-spectrum antiparasitic agent, having inhibitory potential against wide range of viral infections. It has also been found to hamper SARS-CoV-2 replication in vitro, and its precise mechanism of action against SARS-CoV-2 is yet to be understood. IVM is known to interact with host importin (IMP)α directly and averts interaction with IMPß1, leading to the prevention of nuclear localization signal (NLS) recognition. Therefore, the current study seeks to employ molecular docking, molecular mechanics generalized Born surface area (MM-GBSA) analysis and molecular dynamics simulation studies for decrypting the binding mode, key interacting residues as well as mechanistic insights on IVM interaction with 15 potential drug targets associated with COVID-19 as well as IMPα. Among all COVID-19 targets, the non-structural protein 9 (Nsp9) exhibited the strongest affinity to IVM showing -5.30 kcal/mol and -84.85 kcal/mol binding energies estimated by AutoDock Vina and MM-GBSA, respectively. However, moderate affinity was accounted for IMPα amounting -6.9 kcal/mol and -66.04 kcal/mol. Stability of the protein-ligand complexes of Nsp9-IVM and IMPα-IVM was ascertained by 100 ns trajectory of all-atom molecular dynamics simulation. Structural conformation of protein in complex with docked IVM exhibited stable root mean square deviation while root mean square fluctuations were also found to be consistent. In silico exploration of the potential targets and their interaction profile with IVM can assist experimental studies as well as designing of COVID-19 drugs. Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Ivermectina , Antivirais/química , Humanos , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Simulação de Acoplamento Molecular , SARS-CoV-2 , alfa Carioferinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...